Search results

1 – 3 of 3
Article
Publication date: 8 February 2016

Sreekala S.K. and Thirumalini S.

Globe valves have good throttling ability, which permits its use in regulating flows. This paper aims to understand in detail the globe valve with different cage configurations…

Abstract

Purpose

Globe valves have good throttling ability, which permits its use in regulating flows. This paper aims to understand in detail the globe valve with different cage configurations and its impact on the flow characteristics that was carried out.

Design/methodology/approach

The computational study was carried out using FLUENT, a finite volume-based numerical code. Grid sensitivity tests were done and the results were validated experimentally. The effect of cage configuration on flow characteristics and valve coefficient was studied and optimised.

Findings

Valve coefficient was found to be dependent on cage configuration and reaches its maximum for the valve with triangular shaped aperture. Methodology to improve flow performance of a globe valve with highest valve coefficient is established.

Originality/value

Studies related with caged-type globe valves having different configurations are useful for improving their flow performance. In the present investigation, globe valves with different cage configurations and throttle positions are modeled to find out the valve coefficient, pressure and velocity contours inside and outside the cage and is validated with experimental results.

Details

World Journal of Engineering, vol. 13 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 June 2021

Faid Hayette, Abadou Yacine and Ghrieb Abderrahmane

The purpose of this paper is to characterize the properties lightweight green air lime and marble waste mixtures, relating microstructural and chemical properties with physical…

Abstract

Purpose

The purpose of this paper is to characterize the properties lightweight green air lime and marble waste mixtures, relating microstructural and chemical properties with physical development of the material, an effort has been made to simulate the structure of the different mortar reinforced by two main layers plants.

Design/methodology/approach

This paper presents an experimental design of response surface methodology, a model which predicts the mechanical strength and evaluate the effectiveness of bio-waste as a corrosion inhibitor to resist the steel corrosion in air lime mortars as a function of the proportion of the constituents of a new air lime mortar based on a combination of different percentages of marble waste (MRW), air lime and deferent type, layers of natural fiber reinforcement. Luffa sponge gourd and oakum hemp fiber residues capabilities in civil engineering are evaluated by combining numerical and experimental approaches for repair mortar based on air lime and marble waste. Several electrochemical techniques, mechanical strength tests and visual inspection of steel surface were performed.

Findings

The results revealed good mechanical strength and corrosion protection properties of air lime mortar containing the fiber naturel. These green wastes are considered economically feasible, as well having possessing good performance efficiency in protecting rebar reinforcement. These results were confirmed via polarization curves and electrochemical impedance spectroscopy measurements.

Originality/value

The prepared green air lime mortar provided good corrosion protection to the rebar. The significance of this study is to encourage the usage of solid white marble waste to prepare biomass-based repair mortar with good mechanical and anti-corrosion properties on the long term is still a big challenge.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 9 August 2019

Vaira Vignesh Ramalingam, Padmanaban Ramasamy and Madhav Datta

The purpose of this study is to refine the microstructure and improve the corrosion behaviour of aluminium alloy AA5083 by subjecting it to friction stir processing (FSP).

Abstract

Purpose

The purpose of this study is to refine the microstructure and improve the corrosion behaviour of aluminium alloy AA5083 by subjecting it to friction stir processing (FSP).

Design/methodology/approach

FSP trials are conducted as per central composite design, by varying tool rotation speed, tool traverse speed and shoulder diameter at three levels. The microstructure is examined and the hardness is measured for both the base material and the processed workpieces. The corrosion behaviour of the base material and processed workpieces is studied using potentiodynamic polarization technique for three different testing temperatures, and the corrosion current and corrosion rate are calculated.

Findings

The results reveal that FSP refined the grains, dispersed secondary phases, increased the hardness and improved the corrosion resistance of most of the friction stir processed specimens than the base material at all the three testing temperatures. Grain refinement and fine dispersion of ß phase improves the hardness and corrosion resistance of most of the FSPed specimens. However partial dissolution of ß phase decreases the hardness in some of the specimens. Most of the FSPed specimens displayed more positive potential than the base material at all the testing temperatures representing a higher nobility than the base material, as a result of fine dispersion of secondary phase particles in the matrix. Large pits formed on the surface of the base specimen indicating a higher corrosion rate at all three testing temperatures. The SEM image of FSPed specimens reveals the occurrence of very few pits and minimal corrosion products on the surface, which indicates lower corrosion rate.

Originality/value

The corrosion mechanism of the friction stir-processed AA5083 specimens is found to be a combination of activation and concentration polarization.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 3 of 3